Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Recommender Systems: Content-based Systems & Collaborative Filtering

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University

http://www.mmds.org

Example: Recommender Systems

Utility Matrix												
	Avatar	LOTR	Matrix	Pirates								
Alice	1		0.2									
Bob		0.5		0.3								
Carol	0.2		1									
David				0.4								
	J. Leskovec.	A. Raiaraman. J. Ullman: M	ining of Massive Datasets. ht	tp://www.mmds.org	10							

Key Problems (1) Gathering "known" ratings for matrix

How to collect the data in the utility matrix

(2) Extrapolate unknown ratings from the known ones

- Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like

• (3) Evaluating extrapolation methods

How to measure success/performance of recommendation methods

Sidenote: TF-IDF

Sir	nila	rity	/ M		Cosine sim	sim: (x,y) = $\frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sqrt{\sum_{i} r_{xi}^2} \cdot \sqrt{\sum_{i} r_{yi}^2}}$					
	HP1	HP2	HP3	TW	SW1	SW2	SW3	<u>}</u>			
A	4	-		5	1						
$B \\ C$	Ð	5	4	2	4	5					
$\overset{\circ}{D}$		3		2	1		3				
= In = Ja = Co	 Intuitively we want: sim(A, B) > sim(A, C) Jaccard similarity: 1/5 < 2/4 Cosine similarity: 0.380 > 0.322 										
	Consi	ders i	missir	ng rati	ings a	s "ne	gative	"			
	Solut	ion: s	ubtra	ct the	e (row	/) mea	an	sim A B vs A C:			
	HP1	HP2	HP3	TW	SW1	SW2	SW3	0.092 > -0.559			
A B	$3 \frac{2}{3} \frac{2}{3}$	1/3	-2/3	5/3	-7/3			Notice cosine sim is			
C L	\mathbf{p}	0	/ Leskovec, A. Raia	-5/3raman, J. Ullmar	1/3	4/3	0 ://www.mmds.o	correlation when data is centered at 0			

lte	ltem-ltem CF (N =2)													
Users														
		1	2	3	4	5	6	7	8	9	10	11	12	
	1	1		3		?	5			5		4		
	2			5	4			4			2	1	3	
ovies	3	2	4		1	2		3		4	3	5		
E	4		2	4		5			4			2		
	5			4	3	4	2					2	5	
	6	1		3		3			2			4		
- estimate rating of movie 1 by user 5														

ltem-ltem CF (N =2)														
Users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1.m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
ovies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ĕ	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>
Neighbor selection: Identify movies similar to movie 1, rated by user 5							Here we use Pearson correlation as similarity: 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0] 2) Compute cosine similarities between rows we patasets how/www.mmds.org							

lte	ltem-ltem CF (N =2)													
users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
ovies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ĕ	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>
Compute similarity weights: s _{1,3} =0.41, s _{1,6} =0.59											31			

ltem	Item-Item vs. User-User										
	Avatar	LOTR	Matrix	Pirates							
Alice	1		0.8								
Bob		0.5		0.3							
Carol	0.9		1	0.8							
David			1	0.4							
In pr ofterWhy	 In practice, it has been observed that <u>item-item</u> often works better than user-user Why? Items are simpler, users have multiple tastes 										

